• Innovations and Objectives Innovations and Objectives
    • Objectives
    • IML4E innovations
  • Case Studies Case Studies
    • Basware
    • Granlund
    • Reaktor
    • Vitarex
    • Siemens
  • Results Results
    • MLOps monitoring platform
    • MLOps Framework 
    • Adversarial Test Toolbox
    • ML-Py-Stevedore
    • Data Quality Dashboard
    • ML Lineage
    • Mosquito data cleaner
    • MLOps Testing Methodology
    • Discrepancy Scaling for Unsupervised Anomaly Detection and Localization
    • Autonomously Adaptive Experimentation-Driven Pipeline
    • VALICY – a virtual validation system for AI/ML and complex software applications
    • SAGED: Error Detector for Tabular Data
    • Cost-effecient ML
    • ML Metrics Typology + AI Ethics Metrics
    • Calibrated confidence estimator
    • Inference scaling
    • Rare node co-activations in error detection
    • Continuous data monitoring and cleaning dashboard for smart meters
    • MLOps Maturity Assessment Scheme
    • Privacy-friendly Image Preparation for TinyML
    • Model cards toolkit
    • Pipeline Probe
    • Data Quality Evaluation Tool
    • OSS MLOps platform 
    • CABC for MLOps
    • Validation of pose estimation models
    • ML-Py-Stevedore
  • Resources Resources
    • Conferences and Publications
    • Deliverables
  • Up to date Up to date
    • News
  • About About
    • Countries
    • Partners

IML4E – University of Helsinki

  1. IML4E
  2. About
  3. Partners
  4. University of Helsinki
Innovations and Objectives
  • Objectives
  • IML4E innovations
Case Studies
  • Basware
  • Granlund
  • Reaktor
  • Vitarex
  • Siemens
Results
  • MLOps monitoring platform
  • MLOps Framework 
  • Adversarial Test Toolbox
  • ML-Py-Stevedore
  • Data Quality Dashboard
  • ML Lineage
  • Mosquito data cleaner
  • MLOps Testing Methodology
  • Discrepancy Scaling for Unsupervised Anomaly Detection and Localization
  • Autonomously Adaptive Experimentation-Driven Pipeline
  • VALICY – a virtual validation system for AI/ML and complex software applications
  • SAGED: Error Detector for Tabular Data
  • Cost-effecient ML
  • ML Metrics Typology + AI Ethics Metrics
  • Calibrated confidence estimator
  • Inference scaling
  • Rare node co-activations in error detection
  • Continuous data monitoring and cleaning dashboard for smart meters
  • MLOps Maturity Assessment Scheme
  • Privacy-friendly Image Preparation for TinyML
  • Model cards toolkit
  • Pipeline Probe
  • Data Quality Evaluation Tool
  • OSS MLOps platform 
  • CABC for MLOps
  • Validation of pose estimation models
  • ML-Py-Stevedore
Resources
  • Conferences and Publications
  • Deliverables
Up to date
  • News
About
  • Countries
  • Partners

  • Imprint
  • Data Protection
  • Login